A Finite Element Method with Lagrange Multipliers for Low-Frequency Harmonic Maxwell Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analysis of the Finite Element Method Using Lagrange Multipliers for the Stationary Stokes Equations

An error analysis is presented for the approximation of the statiornary Stokes equations by a finite element method using Lagrange multipliers.

متن کامل

A Locally Divergence-free Nonconforming Finite Element Method for the Reduced Time-harmonic Maxwell Equations

In this work, we will focus on (2), which will be referred to as the reduced time-harmonic Maxwell (RTHM) equations. Under the assumption that k is not a Maxwell eigenvalue, the RTHM equations have a unique solution in H0(curl; Ω) ∩H(div ; Ω). Our main achievement in this work is that we design a numerical method for RTHM equations using locally divergence-free Crouzeix-Raviart nonconforming P1...

متن کامل

A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations

A new numerical method for computing the divergence-free part of the solution of the time-harmonic Maxwell equations is studied in this paper. It is based on a discretization that uses the locally divergence-free CrouzeixRaviart nonconforming P1 vector fields and includes a consistency term involving the jumps of the vector fields across element boundaries. Optimal convergence rates (up to an a...

متن کامل

The Finite Element Method With Lagrange Multipliers for Domains With Corners

We study the convergence of the finite element method with Lagrange multipliers for approximately solving the Dirichlet problem for a second-order elliptic equation in a plane domain with piecewise smooth boundary. Assuming mesh refinements around the corners, we construct families of boundary subspaces that are compatible with triangular Lagrange elements in the interior, and we carry out the ...

متن کامل

Finite Element Methods for Maxwell Equations

1. SOBOLEV SPACES AND WEAK FORMULATIONS Let Ω be a bounded Lipschitz domain in R. We introduce the Sobolev spaces H(curl ; Ω) = {v ∈ L(Ω), curlv ∈ L(Ω)}, H(div; Ω) = {v ∈ L(Ω),div v ∈ L(Ω)} The vector fields (E,H) belong to H(curl ; Ω) while the flux (D,B) in H(div; Ω). We shall use the unified notation H(d; Ω) with d = grad , curl , or div. Note that H(grad ; Ω) is the familiar H(Ω) space. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2002

ISSN: 0036-1429,1095-7170

DOI: 10.1137/s0036142901390780